Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 139(20): 3058-3072, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35015834

RESUMO

Large granular lymphocyte (LGL) leukemia comprises a group of rare lymphoproliferative disorders whose molecular landscape is incompletely defined. We leveraged paired whole-exome and transcriptome sequencing in the largest LGL leukemia cohort to date, which included 105 patients (93 T-cell receptor αß [TCRαß] T-LGL and 12 TCRγδ T-LGL). Seventy-six mutations were observed in 3 or more patients in the cohort, and out of those, STAT3, KMT2D, PIK3R1, TTN, EYS, and SULF1 mutations were shared between both subtypes. We identified ARHGAP25, ABCC9, PCDHA11, SULF1, SLC6A15, DDX59, DNMT3A, FAS, KDM6A, KMT2D, PIK3R1, STAT3, STAT5B, TET2, and TNFAIP3 as recurrently mutated putative drivers using an unbiased driver analysis approach leveraging our whole-exome cohort. Hotspot mutations in STAT3, PIK3R1, and FAS were detected, whereas truncating mutations in epigenetic modifying enzymes such as KMT2D and TET2 were observed. Moreover, STAT3 mutations co-occurred with mutations in chromatin and epigenetic modifying genes, especially KMT2D and SETD1B (P < .01 and P < .05, respectively). STAT3 was mutated in 50.5% of the patients. Most common Y640F STAT3 mutation was associated with lower absolute neutrophil count values, and N647I mutation was associated with lower hemoglobin values. Somatic activating mutations (Q160P, D170Y, L287F) in the STAT3 coiled-coil domain were characterized. STAT3-mutant patients exhibited increased mutational burden and enrichment of a mutational signature associated with increased spontaneous deamination of 5-methylcytosine. Finally, gene expression analysis revealed enrichment of interferon-γ signaling and decreased phosphatidylinositol 3-kinase-Akt signaling for STAT3-mutant patients. These findings highlight the clinical and molecular heterogeneity of this rare disorder.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Leucemia Linfocítica Granular Grande , Sistemas de Transporte de Aminoácidos Neutros/genética , Exoma , Proteínas do Olho/genética , Genômica , Humanos , Leucemia Linfocítica Granular Grande/genética , Mutação , Proteínas do Tecido Nervoso/genética , RNA Helicases/genética , RNA Helicases/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
2.
Blood ; 138(8): 662-673, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-33786584

RESUMO

Chronic natural killer large granular lymphocyte (NK-LGL) leukemia, also referred to as chronic lymphoproliferative disorder of NK cells, is a rare disorder defined by prolonged expansion of clonal NK cells. Similar prevalence of STAT3 mutations in chronic T-LGL and NK-LGL leukemia is suggestive of common pathogenesis. We undertook whole-genome sequencing to identify mutations unique to NK-LGL leukemia. The results were analyzed to develop a resequencing panel that was applied to 58 patients. Phosphatidylinositol 3-kinase pathway gene mutations (PIK3CD/PIK3AP1) and TNFAIP3 mutations were seen in 5% and 10% of patients, respectively. TET2 was exceptional in that mutations were present in 16 (28%) of 58 patient samples, with evidence that TET2 mutations can be dominant and exclusive to the NK compartment. Reduced-representation bisulfite sequencing revealed that methylation patterns were significantly altered in TET2 mutant samples. The promoter of TET2 and that of PTPRD, a negative regulator of STAT3, were found to be methylated in additional cohort samples, largely confined to the TET2 mutant group. Mutations in STAT3 were observed in 19 (33%) of 58 patient samples, 7 of which had concurrent TET2 mutations. Thrombocytopenia and resistance to immunosuppressive agents were uniquely observed in those patients with only TET2 mutation (Games-Howell post hoc test, P = .0074; Fisher's exact test, P = .00466). Patients with STAT3 mutation, inclusive of those with TET2 comutation, had lower hematocrit, hemoglobin, and absolute neutrophil count compared with STAT3 wild-type patients (Welch's t test, P ≤ .015). We present the discovery of TET2 mutations in chronic NK-LGL leukemia and evidence that it identifies a unique molecular subtype.


Assuntos
Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Leucemia Linfocítica Granular Grande/genética , Mutação , Proteínas de Neoplasias/genética , Sistema de Registros , Doença Crônica , Proteínas de Ligação a DNA/sangue , Dioxigenases/sangue , Feminino , Humanos , Leucemia Linfocítica Granular Grande/sangue , Masculino , Proteínas de Neoplasias/sangue
3.
Cancer Med ; 9(18): 6533-6549, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32710512

RESUMO

Large granular lymphocyte (LGL) leukemia is a rare hematological disorder with expansion of the T-cell or natural killer (NK) cell lineage. Signal transducer and activator of transcription 3 (STAT3) exhibits somatic activating mutations in 30%-40% of LGL leukemia cases. Transcriptional targets of STAT3 include inflammatory cytokines, thus previous studies have measured cytokine levels of LGL leukemia patients compared to normal donors. Sphingolipid metabolism is a growing area of cancer research, with efforts focused on drug discovery. To date, no studies have examined serum sphingolipids in LGL leukemia patients, and only one study compared a subset of cytokines between the T-LGL and NK-LGL subtypes. Therefore, here, we included both LGL leukemia subtypes with the goals of (a) measuring serum sphingolipids for the first time, (b) measuring cytokines to find distinctions between the subtypes, and (c) establishing relationships with STAT3 mutations and clinical data. The serum analyses identified cytokines (EGF, IP-10, G-CSF) and sphingolipids (SMC22, SMC24, SMC20, LysoSM) significantly different in the LGL leukemia group compared to normal donors. In a mixed STAT3 mutation group, D661Y samples exhibited the highest mean corpuscular volume (MCV) values. We explored this further by expanding the cohort to include larger groups of single STAT3 mutations. Male D661Y STAT3 samples had lower Hgb and higher MCV compared to wild type (WT) or Y640F counterparts. This is the first report examining large groups of individual STAT3 mutations. Overall, our results revealed novel serum biomarkers and evidence that D661Y mutation may show different clinical manifestation compared to WT or Y640F STAT3.


Assuntos
Citocinas/sangue , Leucemia Linfocítica Granular Grande/sangue , Leucemia Linfocítica Granular Grande/genética , Mutação , Fator de Transcrição STAT3/genética , Esfingolipídeos/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Leucemia Linfocítica Granular Grande/diagnóstico , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Adulto Jovem
4.
PLoS One ; 13(2): e0193429, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474442

RESUMO

T cell large granular lymphocyte leukemia (T-LGLL) is a rare incurable disease that is characterized by defective apoptosis of cytotoxic CD8+ T cells. Chronic activation of the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a hallmark of T-LGLL. One manifestation is the constitutive phosphorylation of tyrosine 701 of STAT1 (p-STAT1). T-LGLL patients also exhibit elevated serum levels of the STAT1 activator, interferon-γ (IFN-γ), thus contributing to an inflammatory environment. In normal cells, IFN-γ production is tightly controlled through induction of IFN-γ negative regulators. However, in T-LGLL, IFN-γ signaling lacks this negative feedback mechanism as evidenced by excessive IFN-γ production and decreased levels of suppressors of cytokine signaling 1 (SOCS1), a negative regulator of IFN-γ. Here we characterize the IFN-γ-STAT1 pathway in TL-1 cells, a cell line model of T-LGLL. TL-1 cells exhibited lower IFN-γ receptor protein and mRNA expression compared to an IFN-γ responsive cell line. Furthermore, IFN-γ treatment did not induce JAK2 or STAT1 activation or transcription of IFN-γ-inducible gene targets. However, IFN-ß induced p-STAT1 and subsequent STAT1 gene transcription, demonstrating a specific IFN-γ signaling defect in TL-1 cells. We utilized siRNA targeting of STAT1, STAT3, and STAT5b to probe their role in IL-2-mediated IFN-γ regulation. These studies identified STAT5b as a positive regulator of IFN-γ production. We also characterized the relationship between STAT1, STAT3, and STAT5b proteins. Surprisingly, p-STAT1 was positively correlated with STAT3 levels while STAT5b suppressed the activation of both STAT1 and STAT3. Taken together, these results suggest that the dysregulation of the IFN-γ-STAT1 signaling pathway in TL-1 cells likely results from low levels of the IFN-γ receptor. The resulting inability to induce negative feedback regulators explains the observed elevated IL-2 driven IFN-γ production. Future work will elucidate the best way to target this pathway, with the ultimate goal to find a better therapeutic for T-LGLL.


Assuntos
Interferon gama/metabolismo , Leucemia Linfocítica Granular Grande/patologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Humanos , Interferon gama/genética , Interferon gama/farmacologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...